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Let r be a Jablonski transformation from the n-dimensional unit cube into itself.
We present a method for approximating the absolutely continuous invariant
measures by means of approximating the Frobenius-Perron operator by finite­
dimensional operators. This proves an n-dimensional version of a conjecture by
Ulam and generalizes the one-dimensional results of T. Y. Li. (1991 Academic

Pre\.\. Inc.

1. I"ITRODUCTION

Let 1= [0, 1] and let r: f' -+ I" be a piecewise expanding transformation.
For n = 1, Lasota and Yorke [12] proved the existence of an absolutely
continuous invariant measure (acim) JJ. with respect to Lebesgue measure.
Since then there have been a number of generalizations of this result to
higher dimensions [3,5, 10, 16]. If f is the density of JJ. with respect to
Lebesgue measure m on 1", then it is well known that f is the fixed point
of the Frobenius-Perron operator Pro However, solving the resulting func­
tional equation P r f=f is infeasible in all except the most trivial cases.

In [17, p. 75], Ulam conjectured that it was possible to construct finite­
dimensional operators which approximate P r and whose fixed points
approximate the fixed point of Pr' In [13] this conjecture was proved for
a class of one-dimensional piecewise expanding transformations.

The aim of this paper is to prove a version of Ulam's conjecture in a
higher-dimensional setting. The main difficulty in extending the method of
[13] is due to the definition of bounded variation in n dimensions whieh
is complicated and does not possess the same intuitive properties as one­
dimensional bounded variation [7]. We shall restrict our attention to a
special class of higher-dimensional transformations which we shall refer to

* The research of the first author was supported by NSERe and FeAR grants.

231
0021-9045/91 HOO

Copyright ( 1991 by Academic Pres~. Inc
All nghts of reproduction in ar.y form rt.oscT\\:d



232 BOYARSKY AND LOU

as Jablonski transformations. Such transformations are defined on rec­
tangular partitions of r and on each element of such a partition each com­
ponent of r depends only on one variable. In spite of these restrictions, the
Jablonski transformations are nontrivial extensions of the one-dimensional
transformations. The Jablonski transformations are L 1 dense in the class of
all piecewise expanding transformations on r [15]. Recently, these trans­
formations have found an interesting application to cellular automata [6J,
where they are used to model the dynamics on the space of configurations.

In Section 2 we introduce the Tonelli definition of bounded variation for
higher-dimensional functions [9J and state the existence theorem of
Jablonski [9]. In Section 3, we obtain a generalization of the main result
of [13 J to Jablonski transformations in n dimensions. Unlike the strong
convergence in one dimension, our result provides a weak approximation
to the invariant functions. In Section 4, we discuss uniqueness of absolutely
continuous invariant measures for Jablonski transformations and in
Section 5 we present examples.

2. JABLONSKI TRANSFORMATIONS

Let r = [0, 1In and let mj denote Lebesgue measure on P. For j = n, let
m = mn- We let L 1 denote the space of all Lebesgue integrable functions on
r. The transformation r: r --+ r is written as

where for any i = 1, ... , n, qJi(X 1, ... , x n ) is a function from r into [0, 1].
We say that a measurable transformation r: r --+ r is nonsingular if

m(A)=O implies m(r- 1(A))=0. For nonsingular r:r--+r, we define the
Frobenius-Perron operator P, : L I --+ L 1 by the formula

f pJdx=f fdx,
A ,-l(A)

where A ~ r is measurable. It follows that for x = (Xl' ••. , X n ),

It is well known that the operator P, is linear and satisfies the following
conditions: P, is positive; P, preserves integrals; P,k = P,k, where rk

denotes the nth iterate of rand PT f = f if and only if the measure d/l = f dm
is invariant under r, i.e., J1( r -l(A)) = /l(A) for any measurable subset A
of r.
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Let f3 = {D I' 00', Dp} be a partition of I" such that p < x, i.e.,
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I'

UD·=I"
} '

j~ I

A partitIOn f3 of I" is called rectangular if for any i ~j ~ p, D, IS an
n-dimensional rectangle.

DEFIJ'ITION I. A transformation r: f' --+ I" is called a Jahlonski tranlj'or­
mation if it is defined on a rectangular partition and is given by the formula

where (xi,oo.,X,,)EDj , l~j~p, Dj=n;'~, [aI}' hij)' and C{J1}=[al},h ij ]--+
[0, 1]. If hi' = 1 for some i, then [a'l' hlj) means [a'l' h,J.

Denote by O;I~ I A i the Cartesian product of the sets A i and by P, the
projection of Rn onto R" I given by

P,.(X t , "0' xn ) = (XI' ..., Xi-I' .\'+ I' ..., Xfl)'

Let g: A --+ R be a function on the n-dimensional interval A =

07- I [a" h,]. Fixing i, we define a function V; g of the n - I variables
(XI' 00', X, I' X i + I' 00" x,,) by the formula

A { r

Vg=Vg==sup L Ig(x".oo,x7,oo.,xn )-g(x"oo.,x7 ',oo.,x,,)I:
" k - I

For f: A --+ R, where A = n;I~, [ai' b,], let

if f = inf {f Vg dm" 1: g = falmost everywhere, Vg measurable1
, P,(AI i ,.r

and let VAf= SUPI ,;;,,;;,, V;.r If VAf< oc, then we say f is a bounded
variation function on A and its total variation is V A.r

THEOREM 1 [9]. Let the Jahlonski transformation r: I" --+ l" on the parti­
tion {D j Jr I he given hy
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where Dj=[ajj,h j/) if' biJ<I and Djj=[a,/, hjJ if' hjj=I.
lfliJ: [ajj' hlJ] --+ [0, I] are C2 functions, and

inf { inf I(p;/I } > I.
1./ r(JI/.h,l I

Then for any fE L I the sequence {( I /l) 2:~ = '0 P~ f} is convergent in norm to
a function f* ELI as 1-> 'J~. The limit function has the following properties:

(I ) f~ 0 implies f* ~ 0; (2) SI"f* dm = SI',fdm;

(3) Prf* =f* and consequently the measure dJ-l.* =f* dm IS mvariant
under r U* is called an invariant density); (4) the function f* is of hounded
variation. Moreover, there exists a constant C independent of the choice 4
initialf such that the variation of the limitinx f* sati.~lies the inequality

Wf*~C ilfl!·

3. ApPROXIMATI!';(J THE I~VARIANT DENSITIES

Let r: r -> J" be a Jablonski transformation and for any positive integer
I, let f' be divided into I" subsets of equal measure 1,,12 , ..., II" with

for some 1'" '2' ..., 1'" = 0, I, ... , 1- I and m(ld = 1/1", k = 1,2, ..., 1".
Let P" be the fraction of l, which is mapped into If by r, i.e..

P,., = m(l, n r -'(If))/m(l,.).

Let ,1, be the I"-dimensional linear subspace of L' which is the
finite-dimensional space generated by {'!.k} r~ I' where l..k denotes the
characteristic function of I k, i.e., fE ,1, if and only iff= 2:f ~ I ak'!.k for some
constants a" a2, ..., a,,,.

Define a linear operator P,= P,(r): ,1,-> ,1, by

'"
PI(r) '!.k = I Pk,l,·

, I

Lemmas 1-5 are straightforward n-dimensional extensions of results in
[13 ].
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DEFI"iITION 2. For f ELI and for any positive integer I we define
Q,: L' -+ A, by QJ= I~' I Ck!.k' where mUd = IW and

I , '
Ck=--I ((x)dx=I" I l(x)dx.

m(/k)'''' .,~'

LEMMA 2. Il"f E L' then the sequence QJ converf{es in L' to f as I-+x.

LEMMA 3. Il"fEA" then P,f=Q,P'/

LEMMA 4. II" f E A, then the sequence {P, f} cOnl'(!/"f{es to P, f in L' as
1-+ x'.

LEMMA 5. For any intef{er I there exists f~ ELI, such that P,f~ = f~ and
II f,11 = 1; i.e.. P, has a fixed point 01" norm 1.

In the course of proving Thorem 1, the following result is established in
[9 ].

THEOREM 2. Let r he a Jahlonski transformation, Il'here

II" i. = inC., {inf [u". n" 1 Icp;,1 }> 2. then for any f E L',

I" '"W PJ~K,llfII+C(Wf;

where K, is a constant dependinf{ on rand C( = 2i. '< 1.

We require two more lemmas before we can prove our approximation
result.

LEMMA 6. !ffE L', then Wi" Q,f~ WI"f

Proof: Let I k = n7~, [(r)1), (r, + 1/1))::= n;' ,J" for some r, = 0, 1, ... ,
f- I. k = 1, 2.... , I" and m(Jk) = 0;'_ , m(J,). Let

, I ( l ' )
Q,..t"(x)= L -J-I f(x)dx, XJ,(x;).

" () n1( ,,). J" '

Then

QJ(x) = Q" Q,:'" Q,j(x) = CDt Q,.)f(X).
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By Lemma 2.6 of [13], we have

We now show that

To prove (1), consider, for any 0 = x? < xi < ... < x;- ,< x; = l.

r k _ 1 . kxl (/(x" ..,x; , ... ,x")-}(x,, ...,x;, ...,x,,))
.,on;",!,}"")'1

Now

(I)
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~L lkt (8~f :1~:)(~87fm(Jr)) 1
xJ" f( ... X~ 1 ... l -f( ." X~ '" II

III' :.f'f',J'j
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I" {VQtf=inf L

r ( " I 1 "
= L n L j " 1/(x" ... ,x7 1

••••,x"l-/(.\I, ...,x7, ..·,xnll
k--,l 1=1./-:7-1 r/"O [l j ,.;,.I'#.,J,/

(
" ) I "n (n))

X n. dX i n. j n. 1.1, (X,) . n .dXj
1~l.i"" n,~L/?'im(Jr,lI"-li~I,J"" I ,~I.J""

= ±f"_II/(x 1 , ...,x7 1....,Xfll-/(XI' ...,X~' ... 'Xnll( n .dXi )
k~l I ,~I.J~I

= J L 1/(.\'\, .... x7 \, ...,xn l-/(x\, ...,x7 ...·,xn ll (. n dX i ).
I" 1 k ~ 1 ,~ \. ," \

Hence,

J"_ 1V( n QI,) f ( n.dX,) ~L1Vf ( n.dX,) .
I 1 .1_ t./:;e/ ./-1 . ./#1 I I ./-1./"#1

Now,

1 Vh ( n dX,), h = Qtfa.e., Vh measurable}
I j ~- 1•.i #- i I

{

I" (n) I" }
~ inf f" 1 V QI g n. dXJ ' g =/a.e., V QI g measurable

I I .I = 1,.1 ':F I I

~inf{L 10( fI QI,)g(. fI dX,),
I 1./= I . .ITI ./-1./#1

In }
g =fa.e., yg measurable

~ inf {L 1 Vg ( n.dX i ), g =/a.e., Vg measurable} =W.r
I I .I = 1.,/ # ( I I

Therefore VI" Qtf= max, Vr Qtf~maxi Vrf= v/"f In the fore­
going argument we have used the fact that for any positive integer I and
f; gEL \, f = g a.e. implies Qtf= Q t!; a.e. and Vr g measurable impliesvr Qlg measurable. I
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LEMMA 7. Let r he a Jahlonski transformation

r( x) = (cp Ii ex), ..., cP n) (x /I))' xED,

andf,EA, be any fixed point ofPI(r) with II fIll = 1. {(

). = inf { inf t CP;i I } > 2,
i.,/ [a".h l;]

then the sequence {w I" f,} ~ I is bounded.

Proof By Lemma 3, fl= Pdl= QIPJI for all I. Hence by Theorem 2
and Lemma 6.

I" /" /" /" /"

V fl= V QIPJI~ V PJI~K, lI.f;!1 +cx Vfl=K,+'Y. Vf;,

where K,>O and O<ex< 1. Since W'"ft< x, we have W'"f;~

K,j(l- ex). I
The following self-adjoint property of Q, which was not needed in [13]

plays a vital role in the sequel.

LEMMA 8. For any f ELI, 1= 1, 2, ... , and measurable subset A of r

Proof

THEOREM 3. Let T be a nonsingular Jablonski transformation with parti­
tion {D 1, ..., Dp } and ;, = inf;,; {inf[u'J,h'l] ICP;j I} > 2. Suppose P, has a unique
fixed point, Then for any positive integer I, PI(T) has a fixed point fl in Al
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with II j; Ii = 1 and the sequence {I,} converges weakly to the fixed point

01 Pro

Proof By Lemma 7 and Lemma 3 of [9], we know that the set {/,},~ J

is weakly relatively compact in L I. Let {/d be any weakly convergent sub­
sequence of {I,},':: I and let I = lim l >C1. j;, weakly. Then for any gEL -".,

If g(f- PJ) dxl ~ If g(f- It) dxl + I J' g(lt, - Q"PrJ;) dxl
/' I /' , /'

+ II g(Q"PrJ;, - PJ) dxl·
"I'

The first term approaches 0 since I, converges weakly to I as} ...... x. By
I

Lemma 3, Q, PJ, = P, I, =J;. The second term is identically O.
J J J J J

We now consider the last term. By the weak continuity of Pr [11, p. 43],
Prlt) converges weakly to PJas} ...... oc. We will prove that Q,/Prlt

l
con­

verges weakly to P r I as } ...... x. It is enough to show that for any
measurable subset A of f' we have

where hi, = PrI" and h = Prf
By Corollary IV.8.ll in [4, p. 294],

Lh,,(x) dx ...... 0 as m(E) -+ 0

uniformly in j. Because Ilh'll = 1 and h'I~O, by Theorem 7.5.3 In [1,
p. 296], h, are uniformly integrable, i.e.,

I

as K ...... oc

uniformly in j. Therefore, for any t: > 0, there exists K> 0 such that for alIi

Hence
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The first term is less than c and the second term approaches 0 as j --> x by
Lemma 2. Thus

By Lemma 8,

= lim r h'IW'llA -I.A) dx +Iim r h'JA dx
I _ .'.1 01 /11 I -'. y, ... //1

"
= I hZAdx.

.... I"

This means the last term approaches O.
We have, therefore, established that for any gEL x,

J" g(x) (f(x)-PJ(x))dx=O.
/n

This means PJ(x) =fIx) almost everywhere. Therefore any weakly con­
vergent subsequence of {f,} converges weakly to a unique fixed point of
Pro Hencef,-->fweakly as 1--> 00. I

COROLLARY I. If the fixed point of P r is not unique in Theorem 3, then
any weak limit point of U;}~ I is a fixed point of Pro

THEOREM 4. Let , be a nonsingular Jablonski transformation with
;. = inC./ {inf[a'j,h'll I<p;/I} > I. Suppose Pr has a unique fixed point. Let k be
an integer such that I. k > 2. Let ¢J = ,k andf, be a fixed point of P,(¢J). Let

I k I

X'=k L PrJ,·
I ~- 0

Then {X,} converges weakly to thefL"ed point of P,.
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Proof Since P, is a weakly continuous operator [11, p. 43], Theorem 3
implies that g,-' g = (Ilk) L~': (1 P,J weakly as 1-. oc. Therefore

1 k I k ,

P,g=k L P''/=kL P"f=g,
I ~ 1 J ~ 0

where f is the fixed point of Pd> = P", i.e., P" f =f I

COROLLARY 2. fl the fixed point of P, is not unique in Theorem 4, then

any weak limit point f of {I,} r~ 1 is a fixed point of P ¢ and
g=(l/kfL7=d P,Jis aj/xed point of P,./ff,,-'fweakly as i-.oo then
g" = (Ilk) I.7.:dP,J f~, -. g weakly as i -. 00.

4. UNIQUENESS OF INVARIANT DENSITIES

Let r: r -. r be a Jablonski transformation. Without loss of generality
we shall assume there exist

O=a,.o<a;.1 < ... < a,.', = I, i = I, 2, ..., n

for some positive integers r I' r2 , ... , rn such that the partition f3 is composed
of sets D" .... 'n= n7= I D,." where D,.,= [a;..,,_ I' a,.J, Sj= 1,2, ... , r;-I,
Dr, = [a i. r, _" a i. r,J, and r is given by the formula

r(x)= (cpl,." .. ,)x,), ..., cp"." ..... ,Jx:,,)), xED" .... 'n'

where CP,. ""'n: D" -. [0, 1] are C2 functions.

DEFINITION 3. We say that the partition [3 has the communication

property under the transformation r: f' -. f' if for any elements D~". ". 'n and
D~l' 'n of f3 there exist integers u and v such that D:,. '. 'n c: rU(D~,..,J and
D'~"l' Sn C r

l

'( D: l. ". Sll)·

DEFINITION 4. A Jablonski transformation r: l" -. l" is in class f{{ if it
satisfies following conditions for the fixed partition [3:

(I) inf Icp; I> 0 and inf I(cpn' I> 1 for some integer w;

(2) r is piecewise C 2
;

(3) the partition [3 has the communication property under r.

We associate with each D". ,.. 'n a symbol such as :x, [3, (, ..., and code the
orbit by a sequence <x> =:x f3}' ... if xE D(:x), r(x) E D([3), r 2(x) E D(y), ... ,
where D(:x) is some D" .... 'n whose symbol is:x. The following three lemmas
are identical to the one-dimensional versions proved in [2].
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LEMMA 9. Let r: r ....... r he a C2 Jahlonski transformation which satisfies
condition (1) defining class ((,. Then <x) = <J) implies x = y.

LE'vtMA 10. Let r he as in Lemma 9. fl (J = 'Y. J 'Y. 2 ••. is a sequence with the
property that r(D('Y.d)::::J D('Y.k + J)' k = 1, 2, ... , then there exists a unique
x E r such that <x >= (J.

LEMMA 11. Let r be the same as in Lemma 9 and let ~ c [/ he a collection
of elements satisfying the communication property: for any D I' D2 E~, there
exist integers u and v such that DIe r U (D 2 ) and D 2 c r " (D 1)' Assume that
~ contains at least two D ,'.\. and V = U(). ~ D. Then there exists an x E V such
that {r'(x) }:~ I is dense in V.

LEMMA 12. If r is the same as in Lemma 11 and satisfies condition (3)
defining class rt, then there exists a dense orhit in all (J[ r.

THEOREM 5. Il r E (6 then the ahsolutely continuous invariant measure
under r is unique.

Proof: Assume there exist two such measure with densities f, and j~. As
in [14], it can be shown that there exist two invariant functions j/ ~ 0,
f/ ~ 0, II f,* II = Ilf2* II = 1 such that 51 = sptf,* and 52 = sptf2* are disjoint
and 5 j is an union of disjoint regions, i= 1, 2. From [8] we know that
each 5 i has interior.

Now let x E r be a point which has a dense orbit in r. By Lemma 12
such a point exists. The denseness of the orbit {r'(x)},~ I implies there exist
points u=r"(x) and v=r'2(u) such that uEint51 and vEint52, where int
denotes interior. By the piecewise continuity of r there exists an open ball
0 1 centered at u and in 51 such that for UEO I , v=r'2(u)Eint 52' But 51
and 52 are invariant sets [14J, i.e., r(5,) a.e.. i= 1,2. Hence, we have a
contradiction. Therefore, there exists only one absolutely continuous
invariant measure under r. I

THEOREM 6. Let r: I" ....... r he a Jablonski tra1l.~/ormation with the parti­
tion fJ = {D" .. ,J, .1', = 1,2, ..., r i , i = 1, 2, ..., n given hy the formula

r(xl = (<'PI.,] ... ,)x l l, ..., <'P"..I] .. I.,,(X,,)), xED,] . ... In

such that: (1) for any .1'1' ... , .1'" and i, <'Pi." ... ,)x;) E C 2 and IqJ;." .. ,)xi)1 ~

i. > 1; and (2) the partition fi has the communication property with respect to
r. Then P r has a unique fixed point f with Ii f II = 1.

Proof r satisfies all the conditions of Theorem 5. I
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5. EXA\1PLES
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(1) If for any element D".. 'n of (J, cP i. 'I. H, 'n is a C 2 bijective map of
the closed interval D" onto [0, 1], the restriction r". 'H, 'n of T on D""'n is
a C2 bijective transformation of D""'n onto rand

;. = inf I CP;." .. ,,,I> I,

then T E rg and by Theorem 5 the absolutely continuous invariant measure
under T is unique. Furthermore, If ;, > 2 then by Theorem 3 we have a
sequence of piecewise constant functions f, with Ilf,11 = 1 which converges
weakly to the fixed point of Pr'

(2) We now present an example for n = 2, where the elements of the
partition {J do not map onto all of 12

, (See Fig. I.) Let I, = J, = [0, ~),

12 =J2 =U,!), I,=J,=U, ~), 14 =J4 =U,I] and D",=lkxJj , k,
j= 1,2,3,4.

Let hl(x)=2.4(x2+x), h2(X)=hl(x-~), h3(x)=h t(x-!), h4(x)=
h,(x - ~), Ki(Y) = h,(Y), i = 1,2,3,4, h(x) = 4x, K(Y) = 4y. Then define

r(x, y) = {(hdX), g,(y)),
(h(x), g(y)),

(x,y)ED"r
(x,y)ED 1l •

Since r(Dkj)=[O,nx[O,n (D"j::fDII), r(D,tl=/2
• By [8] we know

that P r has a fixed point and by Theorem 6 it is unique. Also in view of
Theorem 3, j; E /I, with llf,11 = 1 and {I,} converges weakly to the fixed
point of P, as 1-+ x.

3/

1/

1/

1

D14 D24 D34
D44

4

D
13

D
23

D
33

D43
2

D12 D22 D32 D42
4

D11 D21 D31 D41

0 1/4 1/2 3/4 1 x

FIG. I. The domain of a two-dimensional Jahlonski transformation.
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