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Let 7 be a Jablonski transformation from the n-dimensional unit cube into itself.
We present a method for approximating the absolutely continuous invariant
measures by means of approximating the Frobenius-Perron operator by finite-
dimensional operators. This proves an n-dimensional version of a conjecture by
Ulam and generalizes the one-dimensional results of T.Y. Li. ¢ 1991 Academic

Press, Inc.

1. INTRODUCTION

Let /=0, 1] and let 7: I" — I" be a piecewise expanding transformation.
For n=1, Lasota and Yorke [12] proved the existence of an absolutely
continuous invariant measure (acim) p with respect to Lebesgue measure.
Since then there have been a number of generalizations of this result to
higher dimensions [3, 5, 10, 16]. If / is the density of x4 with respect to
Lebesgue measure m on [”, then it is well known that f is the fixed point
of the Frobenius—Perron operator P.. However, solving the resulting func-
tional equation P_ f=f'is infeasible in all except the most trivial cases.

In {17, p. 75], Ulam conjectured that it was possible to construct finite-
dimensional operators which approximate P, and whose fixed points
approximate the fixed point of P,. In [13] this conjecture was proved for
a class of one-dimensional piecewisc cxpanding transformations.

The aim of this paper is to prove a version of Ulam’s conjecture in a
higher-dimensional setting. The main difficulty in extending the method of
[13] is due to the definition of bounded variation in » dimensions which
is complicated and does not possess the same intuitive properties as one-
dimensional bounded variation [7]. We shall restrict our attention to a
special class of higher-dimensional transformations which we shall refer to
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232 BOYARSKY AND LOU

as Jablonski transformations. Such transformations are defined on rec-
tangular partitions of I and on each element of such a partition each com-
ponent of t depends only on one variable. In spite of these restrictions, the
Jablonski transformations are nontrivial extensions of the one-dimensional
transformations. The Jablonski transformations are L' dense in the class of
all piecewise expanding transformations on /" [15]. Recently, these trans-
formations have found an interesting application to cellular automata [6],
where they are used to model the dynamics on the space of configurations.

In Section 2 we introduce the Tonelli definition of bounded variation for
higher-dimensional functions [9] and state the existence theorem of
Jablonski [9]. In Section 3, we obtain a generalization of the main result
of [13] to Jablonski transformations in # dimensions. Unlike the strong
convergence in one dimension, our result provides a weak approximation
to the invariant functions. In Section 4, we discuss uniqueness of absolutely
continuous invariant measures for Jablonski transformations and in
Section 5 we present examples.

2. JABLONSKI TRANSFORMATIONS

Let I"=[0, 17" and let m; denote Lebesgue measure on I'. For j=n, let
m=m,. We let L' denote the space of all Lebesgue integrable functions on
I". The transformation t: I" — I” is written as

T(Xy 5oy X =L@ (X5 oy X1)y ey @l X 15 s X)),

where for any i=1, .., n, ¢,(x,, .., x,,) is a function from 7* into [0, 1].
We say that a measurable transformation t: /" — I" is nonsingular if

m(A)=0 implies m(z~'(4))=0. For nonsingular t: I" - I, we define the

Frobenius—Perron operator P, : L' - L' by the formula

J porae=] s,

where A < I is measurable. It follows that for x = (x,, .., x,),

n

Prf(x)=6 Sf(y)dy.

X, - 0x, L*‘ (7~ [0, xi1)

It is well known that the operator P_ is linear and satisfies the following
conditions: P, is positive; P, preserves integrals; P.= P, where t*
denotes the nth iterate of T and P, f= fif and only if the measure du =fdm
is invariant under 1, ie., u(t " '(4))=pu(A4) for any measurable subset A
of I'.
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Let f={D,, .., D,} be a partition of /" such that p< o, ie.,

[J
U D,=r, D,nD,=forj#k.
j=1
A partition f§ of /" is called rectangular if for any i<j<p, D, is an

n-dimensional rectangle.

DEFINITION 1. A transformation t: " — [I" is called a Jablonski transfor-
mation if it is defined on a rectangular partition and is given by the formula

T(X] s eery .\',,) = ((plj(xl )* eey (pn/(xn))y

where (v, .. x,)eD;, 1<j<p, D;=T1/_, [a,. b,), and ¢,=[a,, b,]—

i=1
0, 1]. If b, =1 for some i, then [a,, b,) means [a,, b,].
Denote by [];_, A, the Cartesian product of the sets 4; and by P, the

i=1]

projection of R” onto R" ' given by
Py s X)) = (X s ey Xy Xy gy een X0 )
Let g:4—- R be a function on the n-dimensional interval A=

i-1 [a,, b,]. Fixing i, we define a function \//' g of the n—1 variables
(x(,. X, |, X; 1, . X,) by the formula

A4 r
\/g=\/g=sup{ Yolglxy, e x¥ i x) =gl X LX)

k=1

a=x)<xl<...<x'=b, reN}.
For f: A— R, where 4=T]"_, [a,, b,], let
A
\V f=inf {j \/ gdm, :g=falmost everywhere, \/ g measurab]e}
i Pi(A) 7 It R

and let W/ f=sup, ..,V / If Y*f<cc, then we say fis a bounded
variation function on A4 and its total variation is VAl

THEOREM | [9]. Ler the Jablonski transformation v: I" — I" on the parti-
tion {D,;}* | be given by

T(Xl’ ey X") = ((pli(xl )s RaE] (P,,,(X,,)), (xl L] xn) € D,,
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where  D;=[a; b;) if b,<l and Dy=[a, b,;] if b;=1
@, [ay, b,1-[0,1] are C? functions, and

inf { inf |@}|}>1.
N [eay.bul

Then for any fe L' the sequence {(1/1) T4 _\, P* [} is convergent in norm to
a function f*€ L' as | - o. The limit function has the following properties:

(1) f20 implies [*=0; (2) [;nf* dm = {,. f dm;

(3) P, f*=f* and consequently the measure du*=f*dm is invariant
under T (f* is called an invariant density); (4) the function f* is of bounded
variation. Moreover, there exists a constant C independent of the choice of
initial f such that the variation of the limiting [* satisfies the inequality

Vrsciri.

3. APPROXIMATING THE INVARIANT DENSITIES

Let t: I" —» I" be a Jablonski transformation and for any positive integer
{, let I" be divided into /" subsets of equal measure /,, I,, ..., I» with

;| r,+1>x ry ra+1 S ry rtl
Lo 1o TR

for some r,, ry, .., r,=0,1, .., [~ 1and m(l,)=1/I", k=1,2,..,["
Let P, be the fraction of /, which is mapped into I, by 1, ie..

P,=m(l,nt "(I)ym(,).

Let 4, be the ["-dimensional linear subspace of L' which is the
finite-dimensional space generated by {y.}¢_,, where g, denotes the
characteristic function of /,, i.c., fe 4,if and only if f=37_, a,, for some
constants @, di, .., d.

Define a linear operator P,;= P,(t): 4,— 4, by

m

PI(T) Lk = Z Pk/Z/‘
[

Lemmas 1-5 are straightforward n-dimensional extensions of results in

[13].

LEMMA 1. Let 4] ={3:_acyi:a, =0 and Y. _,a.,=1}. Then P,
maps A} to a subset of 4).
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DEFINITION 2. For fel' and for any positive integer / we define
Q, L' - A,byQ, /=% | Cirx, where m(I,)=1/1" and

~ ~

Sxyde=1"| flx)dx
Iy

AR .

Cy

LEMMA 2. If fe L' then the sequence Q, f converges in L' 1o fas | — .
LemMma 3. If feA, then P, f=Q,P, /.

LEMMA 4. If fe A, then the sequence {P, [} converges to P, f in L' as
- .

LEMMA 5. For any integer | there exists f,€ A, such that P, f,= f, and
| £, =1: ie. P, has a fixed point of norm 1.

In the course of proving Thorem 1, the following result is established in

(9]
THEOREM 2. Let 1 be a Jablonski transformation, where
T(.\') = ((pi/('\,l )’ iaad) (pn/(xn))- XE D,~

If 2=inf, linfr, . le,|}> 2. then for any felL',

" 1%
VP r<klfli+a\/ £,

i

where K, is u constant depending on v and x=2; ' <1.

We requirc two more lemmas before we can prove our approximation
result.

LEMMA 6. If fe L', then \y"" Q, <" f.
Proof. Let I, =TT7_, Lr/D). (r,+1/D))=T1" ,J, for some r,=0, 1, ..,

:

[=1. k=1,2..." and m(L,)=TT", m(J, ). Let

A (1 1 .
0= T (ol rords )1,

Then

0, f(x)=0, 010, f(x) = ( i Q,,)ﬂx).

i—1

640 6529
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By Lemma 2.6 of [13], we have

\/sz v(n 0,)s- \/Q/< 1 Q,,)_/'s\’}(I:ﬁ 0,1

ioN=1 1j#i f

We now show that
~ m n n . A n
J \/( I1 Q/)f( I1 dx,)SJ \/f( [1 dxj>. (1)
U Nj=nei FElo#i m j= A

-1

To prove (1), consider, for any 0=x?<x!< .- <x/"'<x/ =1,

.

n n
H Ql,f.('xl s ey Xf ) l, ey Xn) - I_l Q[,f(-rl’ ey Xf» ey .’C,,)
Lj#

j=1j#i

121 Iil 1

j=1j#i r,=0 n7=1.,¢im(1r,)

r
=X
k=1

x | (X1, 00 X0 ) = (X e X5y X))
dn;wl./it
( I1 )( 1 n(x})‘
Jj=1,j#i =1 j#1

<Z( PR —

i=lj#i =0 [T7c1%1mU,)

x ( [S(X gy e X5 LX) = (X X5, X))

T ei s,

X( Il dx,)( I x,,,(x,))).
J=1jei J=1j#i

Now

r

[

n Ik—l

n Q,f(x\, . xi7 1 x,)

J=1j#1
n n
- I_I Qf,f(‘r1> ooy x’]‘a weey xn) ( H dx,)
RN

J=1j#i
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n r n -1 n 1
<| X( [1 J( I1 m(J,/))

v ! . .
” k = cljEr =0 NM=1j#0

x| St ) = f ()
.. Jr,

A f1,) LIRS >><,_!ﬁ,fid-*f)

Fi
= Z ( I_I Z J |f‘(xl""’ .\'f o eees / ‘ls'“s~ A .\‘")|
k=1 Lj#1 r, -0 ..;.,g,l,l
l N
" )T i) 7 ( dv))
<l_]|‘]j¢i I n’=l‘/"’m(']'/)J"'_]/—llrllvél /' /—ll—llaé:

Z J LSy X5 x,) = (X ey X5y (

-l

d.\' ,)

ﬂ
— 1,

k=1
Hence,
m " n N
f \/( I Q>'< I dx,)gj vf( 1 dx,).
v i J—lope J=1i#i ! i =1
Now,

\I/Q/ mf{J \/h< ﬂ d\,).h 0, fae., \I/hmeasurable}

=

~ I'
<inf {J/ ] \/ 0, ¢ ( ﬂ dx,), g=rfae,\/ Q¢ measurablc}

p=17#1i

<inf{] IV( [ o)e( 11 )

f 1=Li#: F—l.j#0

n
g=/[ae, \/ g measurablc}

<1nf{

Therefore \/'" Q,f=max, ! Q,f<max, /" f=\"f In the fore-
going argument we have used the fact that for any positive integer / and
f.gel', f=g ae. implies Q,f=0Q, ¢ ae. and \/!" g measurable implies
V! Q,g measurable. ||

\/g< r[ dr,),g fae., \/gmeasurable} \,/.ﬁ

je= 1A
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LEMMA 7. Let 1 be a Jablonski transformation

T(x)=((plj(x1)’ o0 (pnj(xn )v xeDj
and f € 4, be any fixed point of P,(t) with | f,| = 1. If

A=inf { inf |o;l}>2,

i Lagby]
then the sequence {\/" f,};- | is bounded.

Proof. By Lemma3, f,=P,f,=Q,P. f, for all /. Hence by Theorem 2
and Lemma 6.

m

\/fl \/Q/P f/\\/PfISKIIU’[”'*'a\/f/ K+“\///,

where K,>0 and O<a<l1. Since \/'f,<ox, we have 'f<
K/(1—2). |}

The following self-adjoint property of Q, which was not needed in [13]
plays a vital role in the sequel.

LEMMA 8. For any fe L', I=1,2, .., and measurable subset A of I"

[ 2aQifdx=| 1Qpidx

Proof.

" 1
LJAﬂ@ﬂﬂM=LUUKZ [ 701y (0 o

k=1 m(lk)'h.

"
Z f o) dyfnxA(x)xk(x)dx
- Anlk) " om(AndL)
=L d
z__:] Jlkf(y)d}’ kgl m(l) “f/‘f(x) Ix

J (Z —f xaly)dy xk(X)> dx

=] S0 Quax)dx.

THEOREM 3. Let 1 be a nonsingular Jablonski transformation with parti-
tion {D,, .., D,} and i=inf,; {inf, ,1|@}|}>2. Suppose P, has a unique
fixed point. Then for any positive integer I, P,(t) has a fixed point f, in A,
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with || f,[i=1 and the sequence {f,} converges weakly to the fixed point
of P..

Proof. By Lemma 7 and Lemma 3 of [9], we know that the set { 1} %,
is weakly relatively compact in L'. Let { f;} be any weakly convergent sub-
sequence of {f;}= | and let f=lim, ,, f, weakly. Then for any ge L™,

+ ) J, g(f,—Q,P. 1)) dx

J etr-porras|<|[ etr=rds

~

+] 8QP S~ P ] dx

The first term approaches 0 since f, converges weakly to f as j— o«. By
Lemma 3, Q, P, f, =P, f,=/f;. The second term is identically 0.

We now consider the last term. By the weak continuity of P, [11, p. 43],
P. [, converges weakly to P, f as j— cc. We will prove that @, P. f, con-
verges weakly to P, f as j— oc. It is enough to show that for any
measurable subset 4 of I we have

lim J X,,Q,,h,,dx=f 1.0 hdx,
joex dyn "

where h, =P, f, and h="P f.
By Corollary IV.8.11 in [4, p. 294],

j hy(x) dx = 0 as m(E) — 0
N

uniformly in j. Because |h,|=1 and h, >0, by Theorem 753 in [,
p-296], A, are uniformly integrable, ie.,

j [h,| dx =0 as K-
Ayl 2 K}
uniformly in j. Therefore, for any ¢ > 0, there exists K> 0 such that for all j

2'( [h, | dx <e.
a2 Ky

Hence

| n(Qyra—1.4) dx

<J hl1Qura= 4l dx
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—f/ “7/||Q/,/4 4 |h[,||Q1,XA—ZA|dx
'|l/|>K

|h,|<k‘
<2J |hl,|dx+KJ |Q/,Z,1”X,1id«\'
HERERS HEARTS
<2| M|m+KJI&u 14l dx.
TilhlZ K}

The first term is less than ¢ and the second term approaches 0 as j » x by
Lemma 2. Thus

lim | Q14— 14)dx=0.

j v yn
By Lemma 8,

lim J 140k, dx = lim J'nh,/Q,,ZA dx

J e v J— vy

= lim ' h(Q,/A /4)dx+llm ( hy x4 dx
Jyn

]—

~

hy , dx.

I

vn

This means the last term approaches 0.
We have, therefore, established that for any ge L™,

-

J, 80 /()= P f(x)) dx=0.

This means P, f(x)=f(x) almost everywhere. Therefore any weakly con-
vergent subsequence of {f,, converges weakly to a unique fixed point of
P.. Hence f,— f weakly as | - c0. |

COROLLARY 1. If the fixed point of P, is not unique in Theorem 3, then
any weak limit point of { f,}., is a fixed point of P,.

THEOREM 4. Let 1t be a nonsingular Jablonski transformation with

s =inf;, {mf[au by |<p,, }>1 Supp()se P, has a unique fixed point. Let k be
an integer such that ;*>2. Let ¢ =t* and f, be a fixed point of P,(¢). Let

l/\' 1
gl=z Z Pr’fl'
j=0

Then { g,} converges weakly to the fixed point of P..
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Proof. Since P, is a weakly continuous operator [11, p. 43], Theorem 3
implies that g, —»g=(1/k) %2 P, f weakly as [ - cc. Therefore

1 k-1
Pr/fzz Z Prffzgv
Jj=0
where fis the fixed point of P,= P, ie, Puf=f |}

COROLLARY 2. If the fixed point of P, is not unique in Theorem 4, then
any weak limit point [ of {f;}]., is a fixed point of P, and
g= (k)X o P..f is a fixed point of P.. If f; = f weakly as i~ o then
g, =(1/k)352y P f, — g weakly as i — .

4. UNIQUENESS OF INVARIANT DENSITIES

Let 1: 1" — I" be a Jablonski transformation. Without loss of generality
we shall assume there exist

O=a,<a, < - <a,=1, i=1,2,..,n

for some positive integers r |, r,, .., r, such that the partition § is composed
of sets D, ., =TII/_,D,, where D, =[a,,. ,a,,) $;=1,2,.,r,—1,
D, =[a,, _\,a;,], and 1 is given by the formula

T(X) = ((pl SVy e ,y,,(xl )9 R (pn, Sl cene .s,,(xn))’ Xe D.\‘]. s Sp?

where ¢, . :D, —[0,1] are C* functions.

DEFINITION 3. We say that the partition § has the communication
property under the transformation t: /" — I if for any elements D, and
Dy, .., of B there exist integers u and v such that D < (D _,)and

Sl S

D ., ct(Dy, )

DEFINITION 4. A Jablonski transformation : I" —» " is in class € if it
satisfies following conditions for the fixed partition f§:
(1) inf|e;] >0 and inf [(¢})' | > for some integer w;
(2) 1 is piecewise C%;
{3) the partition § has the communication property under z.
We associate with each D, a symbol such as «, 8, 7, ..., and code the
orbit by a sequence (x> =a fy--- if xe D(a), t1(x)e D(B), t}(x)e D(y), ..,

where D(x) is some D, whose symbol is «. The following three lemmas
are identical to the one-dimensional versions proved in [2].
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LEMMA 9. Let v: I" - I" be a C* Jablonski transformation which satisfies
condition (1) defining class 6. Then {x) = {y) implies x = y.

LeMMA 10.  Let T be as in Lemma 9. If 6 =2, %, - -- s a sequence with the
property that t(D(a)) > D(x, ), k=1,2, .., then there exists a unique
xelI" such that {x)=o0.

LEMMA 11.  Let t be the same as in Lemma 9 and let & < f§ be a collection
of elements satisfying the communication property: for any D,, D, €&, there
exist integers u and v such that D, c 1 (D,) and D, < 1"(D,). Assume that
¢ contains at least two D/s and V =\, : D. Then there exists an x € V such
that {t(x)};- | is dense in V.

LeMMA 12, If t is the same as in Lemma 11 and satisfies condition (3)
defining class €, then there exists a dense orbit in all of I".

THEOREM 5. If t€% then the absolutely continuous invariant measure
under T is unique.

Proof. Assume there cxist two such measure with densities f, and f,. As
in [14], it can be shown that there exist two invariant functions f* >0,
f*=20, [ f*¥ = /¥ =1 such that S, =spt f* and S, = spt f3* are disjoint
and S; is an union of disjoint regions, i=1, 2. From [8] we know that
each S, has interior.

Now let xe/” be a point which has a dense orbit in /. By Lemma 12
such a point exists. The denseness of the orbit {/(x)} /<, implies there exist
points « =t"(x) and v = t%u) such that ueint S, and veint S,, where int
denotes interior. By the piecewisc continuity of 7 there exists an open ball
O, centered at v and in S, such that for ue O,, vt =1t"*(u)eint S,. But §,
and S, are invariant sets [147], ie, ©(S,) ae., i=1,2. Hence, we have a
contradiction. Therefore, there exists only one absolutely continuous
invariant measure under . |

THEOREM 6. Let t:[" — [" be a Jablonski transformation with the parti-
tion f=14D, ), s,=1,2,.,r,i=12 ..n given by the formula

T(,\') = ((/) sy, o .a',i(xl )’ eees (pn‘.\]. oy ,\*,,(xn))s xXe Dv\’|. e Sy

such that: (1) for any s, ..,s, and i, ¢, (x)eC*and | @}, ., (x)=
2> 1; and (2) the partition  has the communication property with respect to
1. Then P, has a unique fixed point f with | f || = 1.

Proof. 1 satisfies all the conditions of Theorem 5. '}



INVARIANT MEASURES 243
5. EXAMPLES

(1) If for any element D, , of f, ¢, ., is a C? bijective map of

the closed interval D, onto [0, 1] the restriction’ T, ..,oftonD, s
a C? bijective transformation of D, ., onto !l dnd
A=infle . I>1

then 1€ % and by Theorem 5 the absolutely continuous invariant measure
under t is unique. Furthermore, If />2 then by Theorem 3 we have a
sequence of piecewise constant functions f, with || ;|| =1 which converges
weakly to the fixed point of P..

(2) We now present an cxample for n =2, where thc elements of the
parlition $ do not map onto all of /% (See Fig. 1.) Let I,=J,=[0, 3),
J’_[ZE ]=J3=[%, %), ]4=J4= 2,1] and Dk/=1kXJj, k,
j—] 2,3,4.
Let h(x)=24(x*+x), hy(x)=h(x
hi(x—2), g0 =h(y)i=1,2734, h(x

T(x ’)z{(hl‘( &) (%, y) € Dy Dy #D,
’ (h(x), g(3)) (x,y)eD,,.

Since ©(D,;)=[0,3]x[0, 3], (Dy;# Dy,), ©(D,,)=1" By [8] we know
that P, has a fixed point and by Theorem 6 it is unique. Also in view of
Theorem 3, f,e A, with || £, =1 and {f,} converges weakly to the fixed
point of P, as {— .

—%) hy(x)= h(\'—l) ho(x)=
) =4x, g(y)=4y. Then define

2
1
Dyg | Dag | D3y | Dgq
3/4
Dyg | Daz | Daz | Dyy
1/2
Dio | Bpp | D3p | Dy
1/4
Dll DZl D31 D41
0 i/a  1/2  3/4 Ql

FiGg. 1. The domain of a two-dimensional Jablonski transformation.
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